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We present a new particle method for the simulation of the Boltzmann transport equation 
of semiconductors. It differs from the Monte-Carlo method by the treatment of the collision 
integral which is performed in a deterministic way. A brief overview of the numerical analysis 
of the method is given. Then, numerical results are presented, dealing with several cases of 
interactions: relaxation time models (which provide test cases), polar optical, and intervalley 
scatterings. e 1988 Academic Press, Inc. 

I. INTRODUCTION 

This paper is devoted to the presentation of a new particle method, for t 
simulation of the Boltzmann transport equation (BTE), of semiconductors. This 
method relies on a deterministic treatment of the collision integral. We hope it will 
provide an interesting alternative to the classical Monte Carlo. This metho 
first been suggested by S. Mas-Gallic for the Boltzmann equation of gas dy 
Cl], and for the neutron transport equation [2]. 

Most of the numerical studies in semiconductor device simulations are based 
upon the drift-diffusion model [3] (or less currently, the drifted Maxw~llian 
approach (or hydrodynamic model) [4]). However, the transport properties of new 
submicronic components are quite different from those of bulk components. These 
differences are detailed in [S]; they originate from the presence of hot and ballistic 
electrons. In [5] may also be found the basic reasons why the drift-d 
approach or the drifted Maxwellian approach are unable to account accurately for 
ballistic transport. On the other hand, the BTE provides a precise d~s~ri~tio~ of 
carrier transport in a semiconductor (cf. [I;] for the validity and limitations of t 

TE). It is, however, far more costly to compute numerically. 
The most widely used numerical method of simulation of the BTE, is the 

Carlo method. For a review on this method, we refer the reader to C7, Chap. IS; or 
owever, the Monte-Carlo method relies on the use of random sampling, which 

leads to very noisy and rather inaccurate computations, otherwise using an 
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extremely large amount of particles (and therefore, of computer time). Consequen- 
tly, sharp resolution of transients as well as precise maps of the distribution 
function, are seldom given. Furthermore, the extension of the Monte-Carlo method 
to nonlinear collision operators (for instance, in the case of degeneracy or inter- 
carrier collisions) leads to a dramatic increase of its computational complexity. 
It has, however, been used by Lugli and Ferry [9] to investigate intercarrier 
collisions. 

Let us briefly mention the other approximation methods for the BTE. First of all, 
perturbation methods have been used to obtain analytical approximate solutions of 
the BTE, in various situations (see, e.g., [lo] for recent references). The well- 
known diffusion approximation and its various extensions can be considered as 
belonging to this class of methods (cf. [ll, 12, 131). For the other numerical 
methods, let us mention the iterative technique of Rees [14] (see also [ll]), and 
more recent works devoted to the nonhomogeneous case, such as the works of 
Baranger [S] and Kuivalainen and Lindberg [ 151. 

Our intention is to present a particle method for the simulation of the BTE, 
which uses a deterministic treatment of the collision term, first proposed by S. Mas- 
Gallic [ 1, 21. In this method, the particles move according to a collisionless 
dynamics. So far, they model the collisionless Vlasov equation (cf. [7, Chap. 71, for 
a review of the properties of collisionless particle models). To include the treatment 
of the collision term, we allocate to each particle a weight, which varies in time 
according to the collision integral. This integral is evaluated by a quadrature for- 
mula, where the particles themselves play the role of quadrature points. Therefore, 
the influence of collisions is superimposed to the collisionless dynamics of the 
particles, by means of the variations of their weights. 

The integral form of the collision operator in the semiconductor BTE is very well 
suited to such a “weigthed” particle method, since there are deep connections 
between particle methods and quadrature formulae. (This has been first pointed out 
by G. H. Cottet and P. A. Raviart [16, 171; cf. also Section IV.) However, the 
method is not limited to collision operators in integral forms, and the case of a 
Fokker-Planck operator can be handled by similar methods. [18]. 

One can hope this method will provide a fairly accurate (because it is deter- 
ministic) treatment of the BTE in the 2 following cases (which are not exclusive): 

(i) The dynamics is dominated by collisionless effects. This is probably the 
case when dealing with submicronic components where ballistic transport is 
dominant. 

(ii) The distribution of particles (governed by the collisionless dynamics) 
remains homogeneous enough, to suppress the occurrence of large quadrature 
errors in regions where particles are too far from each other. This is the case for the 
model we deal with in this paper: the homogeneous field model. 

The aim of this paper is to show that this method can give accurate results on 
physically relevant problems. The homogeneous field model provides a good 
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starting point for that purpose, since the physics involved is not too complex, so 
that the numerical artifacts can be detected and analyzed. Furthermore, the one- 
dimensional energy-dependent relaxation time models provide analytical stationary 
solutions, which can be compared with the numerical experiments. In the near 
future, the method will be adapted to nonhomogeneous field models (with 
coupling), and also tested at high doping conditions. 

For the physical parameters, we choose those of gallium arsenide at 77K (liquid 
nitrogen temperature), since it is expected that ballistic transport plays a crucial 
role in these conditions. The parameters are those used in 1191. They will 
recalled when needed. 

We did not choose to include the various types of interactions altogether, as it is 
done in the classical model for GaAs [20, 211, but rather we studied two of these 
interactions in detail: polar optical and intervalley scattering. The others are 
accounted for by a relaxation time model. On the other hand, we compare tbese 
two interactions, with two simplified one-dimensional models based on ene 
dependent relaxation time approximations, for which the stationary sol~~io~.s 
be computed analytically. Indeed, the deformation potentials associated with ea 
interaction are not known within a 10 to 50% error bar. So, it is our feeling that 
simpler (and cheaper) models could be designed in order to account for general 
features of each interaction. This viewpoint has been previously expres in [5-j. 
We would like to show that our code could be used for this “optimal design” 
purpose. 

The paper is organized as follows: we give a general presentation of the kinetic 
model of semiconductors in Section II, while Section III is devoted to the 
homogeneous field case. In Section IV, we introduce the reader to the ~~rn~r~~a~ 
method. Section V is concerned with tests of the numerical parameters on a 
constant relaxation time model. In Section VI, polar optical scatter-in and 
its simplified one-dimensional relaxation time model are investigated. The same 
analysis is performed in Section VII for intervalley scattering. A conclusion is drawn 
in Section VIII. 

II. THE KINETIC MODEL OF SEMICONDUCTORS 

In the kinetic model of semiconductors, each type of carriers is described 
distribution function f(x, k, t), where x is the spatial position, k, the p 
wavevector of the carriers, and t > 0 the time. In this paper, we will only consider 
electrons, since their dynamics dominate the hole dynamics in N-doped materials, 
and especially, in N-doped GaAs. f (x, k, t) describes the occupancy probability of 
state of wavevector k, at position x, and time 1. f is therefore comprised between 
and 1. The macroscopic variables such as the electron density pz(x, t), mean velocity 
6(x, t), or mean energy E(x, t) can be recovered from f according to 
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n(x, f) = j- f(x, k, 1)(4x3) -’ dk 

6(x, t)+(x, k, t) v(k)(4n3)-‘dk/n(x, t) (1) 

8% t) = 1 j-(x, k, t) p(k)(4n3) -’ dk/n(x, t). 

E(k) and v(k) give the kinetic energy and the velocity associated with a state of 
wavevector k. E(k) is the band diagram of the semiconductor which is now well 
known for the most important materials [22]. Except when dealing with intervalley 
effects (cf. Section VII), E(k) will be modelled in this paper by a parabolic valley 
(with m*, the electron effective mass) 

E(k) = ~7 k2/2m*; 

v(k) is deduced from the band diagram E(k) by the relation 

v(k) = V, 4k )P, 

where fi is the reduced Planck constant. The factor (47~~))’ takes into account some 
quantum aspects of the statistics and is known as “the density of states.” 

The evolution of the distribution function is ruled by the Boltzmann transport 
equation (BTE); it expresses that the electron motion results from the combined 
effects of a drift under the electric field and of scatterings by other carriers or crystal 
defects. It is written [S, 11, 231 

where q is the absolute value of the elementary charge. Equation (2) must be 
supplemented by an equation for the electric field E(x, t), and by suitable initial and 
boundary conditions. 

The collision operator Q(f) will be our main concern in this paper. It is written 
Cl61 

Q(f) = j- [s(k’> k) fM1 -f(k)) 

- s(k, k’) f&)(1 -f(W)1 dk’, (3) 

where s(k, k’) dk’ is the transition rate for an electron to be scattered from a state 
k, into a state belonging to a small volume dk’ around k’. Many scattering 
mechanisms can be considered, each of these leading to a particular expression of 
s(k, k’), obtained from a quantum mechanical description of the scattering event 
(cf. [S, 11, 231 and references therein). All these scattering mechanisms must be 
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included in a realistic and reliable description of the semiconductors and the 
resulting transition rate s is the sum of all these elementary transition rates. 

The strength of a particular interaction can be measured by its eo~~~si~~ 
frequency L(k), which is related to the transition rate by 

A(k) = 1 s(k, k’) d 

and which describes the reciprocal average time between two collisions, for a 
electron of wavevector k. Plots of h: versus energy for GaAs are given in [19[B~ It 
shows that for lightly doped GaAs, at 77K, and under high field condit’ 
( 105-107 Vm-‘), the dominant scattering mechanisms are polar optical 
intervalley scatterings. This is the reason why we chose to study these two types of 
scattering mechanisms in detail and to describe the other types of scattering by a 
relaxation time model. From a numerical viewpoint, it allows us to isolate the 
effects of the discretization on the most important interactions and leads to a more 
pertinent analysis. 

Dealing with a lightly doped material also allows us to forget t 
(1 -f) in the expression of the collision operator (3), leading to 

Q(f) = s CW, k) f(k'l- s(k W f(k)3 a'. 
This simplification will be used throughout the paper. 

The collision operator, described by (4), exhibits two important properties, w~~~~ 
will be referred to as conservativity and relaxation properties. The ~o~servaFivity 
simply expresses that the local density is preserved during the interaction; this is 
easily deduced from the fact that 

s Q(f) dk = j-J [s(k’, k) f (k’) - s(k, k’j f ( 

On the other hand, the local momentum and the local energy of the electro 
tribution are generally not preserved during the interaction. They can be tr ed 
from or to the lattice. The relaxation property is more easily expressed in of 
the Maxwellian distribution function M,(k), at the lattice temperature a: 

M,(k) = N*( T)-’ exp( -E(k)/kBT) 

N*(T) = (2rcm*kBT/fi2)3’2; 

(4~‘)~ ’ N*(T) is the so-called “effective density of states,” and k, is the 
constant. 

Now, all the physical scattering mechanisms can be written 

s(k, k’) = &k, k’) MT(k’) 
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where CJ is symmetric with respect to k and k’ and, of course, positive. Thus we get 

Q(f) = /W, k’)(M,(k) f(k’) - M,(k’) f(k)) dk’- 

By symmetry of 4, and positivity, we deduce that the null space of Q is spanned 
by M,: 

Q(f) = 0 of(x, k, t) = (47c3)-’ n(x, t) M,(k). (5) 

Property (5) will be referred to as the “relaxation property.” It expresses that 
physically, the action of Q is a relaxation towards the local thermodynamical 
equilibrium. Mathematically, the relaxation property is the starting point of the dif- 
fusion approximation, which connects the kinetic theory with the drift-diffusion 
models [13]. Of course, we will ask the numerical schemes to satisfy (in a discrete 
sense) the conservativity and relaxation properties. 

III. THE HOMOGENEOUS FIELD MODEL 

The homogeneous field case provides a simplified, but physically relevant model, 
to test the validity of our numerical scheme. It relies on the assumption that f does 
not depend on x and that the electric field E is a constant (in space and time) 
vector. 

Then, we use the symmetry axis provided by E, to reduce the dimensions of the 
problem; we assume that the distribution function f(k, t) is symmetric under 
rotations of k about E; that is, f is a function of t, kl, and kZ, defined by 

k,=k.E/E; k,=(k-k,E/EI; (kl,k,)ERxlR+;E=(E(. 

This hypothesis is satisfied at any time, provided it is satisfied by the initial 
distributionf,(k) and that the scattering cross section can be written 

s(k, k’) = s”(k, k’, k . k’); k = Jk(; k’ = Ik’(. (6) 

The isotropy hypothesis (6) can be verified for all the physical scattering 
mechanisms. 

With (6), we can define a reduced scattering cross section o, according to 

o(k,, k,, k;, k;) = & j-In S((kf + k;)1’2, (k;’ + kk2)l”, 

k, k; + k, k; cos 0) de, (7) 

which can generally be explicit computed. 
To simplify the notations, from now on, we will denote the pair (k,, k2) by k, 
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and use c$k, k’), f(k) . . . for o(k, , kZ, k; , k;), f(k, , k2) . . . . The Euclidean volume 
element is now defined by d&Z(k) = 2rck2 dk, dk,. 

With these assumptions and notations, the homogeneous field 
equation with symmetry is now written 

;-$$z Q(f); fit=o =f&) 
1 

Q(f)={ CO', k)f(k')-o(k,k')f(k)ld~(k'). 

An alternate expression of Q can be given by defining a symmetric distribution 
p(k, k’) according to 

o(k, k’) = cp(k, k’) M,(k’) (9) 

and by letting 

Q(f) = j cp(k k’)CM,(k) Ilk’) - MAk’) f(k)1 dQ(k’). 

Therefore, the conservativity and relaxation properties are preserved. As a con- 
sequence of the conservativity, the local density n given by (l), is a constant scalar. 
Due to the linearity of the model, it just plays the role of a scaling factor for f and 
does not influence the dynamics. Thus, throughout the paper, it has been chosen to 
scale the distribution function so that 

s f(k, t) da(k) = 1. 

The mean velocity G(t) and mean energy E(t) are thus given by 

E(t) = s c(k) f(k, t) d&‘(k). 

A further restriction is to consider one-dimensional models: one-dimensional 
relaxation time models provide analytical stationary solutions, which we will use to 
validate our two-dimensional code. Thus, we have to show how these one- 
sional models can tit into the two-dimensional homogeneous field formalism: 

The one-dimensional model considers a distribution function T(kI, I), k, E R, 
which solves the equation 
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- 
g-~-g=Ql’i(f); f(k,, O)=f,(k,) 

1 

Q?f,=j @(k,> k;)CM~)(k,)f(k;)-M!‘)(k;)~(k,)l dk;, 

(10) 

where we denote by Mp)(k,) the one-dimensional Maxwellian distribution, 

Mp)(k,) = N;’ exp - 2:::’ *; N, = (2nm*k, T/fi2)‘12, 
B 

and by @(k,, k;), the positive symmetric function which defines the (one-dimen- 
sional) interaction. 

In order to fit problem (10) into the 2D formalism, we introduce 

f(k t) * Ji(k, , t) . M$?(k,) 

dkk’)=lo(k,,k;); f,(W=Jb(WWW,), 

where M$?)(k,) denotes the 2D Maxwellian distribution: 

(11) 

M$?(k,) = N,-’ exp - 2iI”,: T; N2 = (2nm*k,T/h’). 
B 

Next, we remark that the 3D Maxwellian factorizes, 

M,(k) = Mg’(k,) M$Y(k,), 

so that multiplying Eq. (10) by M$?)(k,) and using the fact that 

s 
m Mp)(kJ -2nk, dk2 = 1, 

0 
(12) 

we obtain Eq. (8) for f(k, t) and f,(k). Conversely, by uniqueness of the Cauchy 
problem, any solution of problem (8), with data given by (1 1 ), factorizes into a 2D 
Maxwellian and the solution of problem (10). 

IV. THE NUMERICAL METHOD 

IV.l. Presentation 

In this section, we detail the particle method with deterministic treatment of the 
collision term. Letf,,(k, t) be the approximation off into delta functions (particles): 

fdk, t) = c oif,(t) W - ki(t)). 
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We denote by oi a constant control volume associated with the ith particle. 
positions k,(r) are determined by the collisionless dynamics of the electrons in t 
space; that is, 

ki,l(t)=ki,:(O)-qEt/h, ki.2(t)=ki,z(O). (131 

Therefore fh satisfies 

Thus, if Qi(t) denotes a suitable approximation of the collision operator 
Q!(f)(kj(t)), we easily deduce from (14) that the weights must vary according to 

The integral form of the collision operator suggests the use of particles as sam 
points in a quadrature formula. This leads to the evaluation of Qi(t), 

where IT, is an approximation of B to be determined later. Now, introducing the 
constant Euclidean control volume, 

Qj = oi2zkj,2, 

we gather (15) and (16) to get the particle scheme, 

with ki(r) given by (13). 
From (13) and (17), it appears that this method has strong analogies wit 

Monte-Carlo method. Indeed, in the absence of collision terms, they both reduce to 
the same collisionless particle method. By its use of quadrature formulae, this 
method also approaches Kuivalainen and Lindberg’s method [IS]. It seems to be 
quite different from the other numerical methods that we mentioned in the 
Introduction, namely the iterative technique of Rees [I41 or of Baranger [5]. 
Finally, the extension of the present method to spatially nonhomogeneous struc- 
tures is 
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From expression (17), it follows that 

Therefore the discrete density n(t) is independent of t, 

(18) 

showing that the conservativity property holds at the discrete level. In order to 
preserve the relaxation property at the discrete level, the approximate O, must be 
chosen so that 

a,&, k’) = v,,(k k’) M,(k’) (19) 

with a symmetric qa. In that case, an alternate expression of the discrete collision 
operator is 

The null space of the discrete collision operator Qj is then spanned by the discrete 
Maxwellian fi( t) = M,(k,). 

The initial positions of the particles are the nodes of a regular mesh, of mesh size 
(dk,, A?,). The control volumes and the initial weights are thus: 

oi = Ak, Ak,; sZj = 2nk,,(O). Ak, Ak, 

f,(O) = f,(ki(O))* 

Since all the particles move at the same speed -qE/h, they remain at any time t, on 
a regular mesh of mesh size (Ak,, Ak,), which can be deduced from the initial mesh 
by a translation of vector -qEt/h. This means that the “information” remains 
uniformly distributed over the entire domain. In particular, this avoids the use of an 
interpolation procedure to recover point values of the solution in regions where 
particles are absent, as it is generally done in standard particle methods [16]. This 
simplification is due to the homogeneous field formalism and cannot be carried out 
for a general space-dependent problem. 

Finally, the discrete mean velocity and mean energy are defined according to 

E(t) = 1 QiE(ki(tf) h(t)- 
I 
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IV.2. Numerical Analysis 

The detailed numerical analysis of the method will be performed in a forthcoming 
paper [24]. These conclusions of that analysis which may have consequences on 
the practical use of the method will be outlined here. These ‘conclusions depend on 
the choice of the approximate G,, which in turn depends on the regularity of o. 

The case of a regular (r is the easiest one but, unfortunately, does not corres 
to real physical models. It will be illustrated in Section V by the relaxation time 
model. In that case, CT, = 0 is the best and most natural choice. Thus the only 
approximation introduced by the numerical method is the evaluation of the 
collision integral by the quadrature formula (16). Therefore, the method retains all 
the accuracy of quadrature formulae. 

Since the integration is performed in the half space R x R + ) with a boundary 
at k, = 0% the accuracy of quadrature formula (16) is just of or 
h*(h = (dk2 + dk2)“2. cf. [ 16, Lemma 3.2; or 241). We recall that for an integra 
over the kntire ‘spahe R*, quadrature formulae are of infinite order (cf. 
Theorem 3.11). The order of the method has been determined by numerical 
experiments (cf. Section V), which show that, in practice, it is about equal to 3. 
Thus, the presence of the boundary at k2 = 0 does not destroy the very high 
accuracy of quadrature formulae, as much as could be expected from the ~~~e~i~al 
analysis. 

Now, in real physical models, the scattering cross section is singular. For 
example, polar optical or intervalley scatterings are described by a’s of the sha 
(cf. Sections VI and VII) 

o(k, k’) = j?(k, k’) 8(c(k’) - I + cq,), 

where p(k, k’) is a smooth function and where we recall that 

E(k) = k*; E( k’) = kt2 

denote the energies of electrons of wave vectors k and k’. c0 > 0 is the energy of t 
absorbed or emitted phonon and the delta function expresses the conservation 
the energy of the system (electron; phonon) during the scattering. 

Now, the sample points k, will never be close enough to resolve the singulari 
the delta function. Thus, we must remove this singularity by i~troduei 
smoothing function i,(x) such that 

j 

m 
[ is even; i(x) &= 1 --c? 

and introduce the following approximate cm: 
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Such a smoothing procedure is widely used in particle methods and is analyzed on 
model problems in [l, 16-18-J. The analysis usually shows that the smoothing 
procedure introduces a new source of (convolution) error, proportional to some 
power of CI. But this is compensated by the fact that, despite the singularity of the 
integrand, the quadrature estimate retains its accuracy, being proportional to 
(typically) h2/a2. 

However, the above mentioned analyses, always deal with model problems, the 
exact solutions of which are as regular as needed. This is not the case for the 
present problem: the solution of the BTE with a scattering cross section given by 
(20), is not more than 4 Holder continuous. This is easily seen by inspection of the 
scattering frequency for the emission process, given by 

A(k) = n Jon P(k, (k2 - Eo):/” exp iB)(k2 -co):/* sin 8 de, 

where we use the notations 

exp iQ = (cos 19, sin 0); E + = Max(s, 0). 

The factor (k2 - q,):/2, which physically corresponds to the density of final states, 
makes the normal derivative of II singular along the sphere k2 = sO, the singularity 
behaving like (k’ - co); 1/2 For the absorption process, a similar (but more con- . 
cealed) singularity is present in the gain term of the collision operator. Now, these 
singularities make the solution of the BTE singular in its derivatives (indeed, in 
[24] we prove that f(t) belongs to W’,p(R x R,) for p in [l, 21). This leads to a 
stiff problem for numerical approximations. In [19], Hesto already pointed out this 
stiffness problem from the viewpoint of Monte-Carlo calculations. 

For our numerical procedure, the consequences are twofold. First, it worsens 
the convolution part of the error, which is now, as expected from the $-Holder 
continuity of the solution, of the order of CI . ‘I2 Particularly, no improvement can 
be obtained by the use of higher order smoothing functions [, with higher order 
vanishing moments (cf. [ 16, Lemma 4.41). This is confirmed by the numerical 
experiments (cf. Section VI). Second, it also worsens the quadrature error, which 

2 becomes of order h /a 7’2 ‘because not only (T, but alsof, are singular in the integral , 
(8). The total error is thus given by 

Max /J;(t) -f&(t), t)i = @a”* -t h2/ct7’2). (22) 

Thus, CI must be chosen large enough to reduce the quadrature error (in particular, 
to make sure that for each particle ki, particles kj such that [,(r(k,) - e(kj) + eO) # 0 
will be numerous enough). But c1 must not be too large in order that the 
convolution error not be too large. We will try to determine the best compromise in 
Section VI. 
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The smoothing procedure as expressed by formula (21) leads to a constant 
“smoothing length” LY in the energy variable E. But due to the quadratic reIa~o~ 
s(k) = k2, the smoothing length is no more constant in the 
small /k/‘s and small for large jkl’s). Since the discretization i 
in the k space, a smoothing procedure with a constant smoo 
preferable. Such procedures are investigated in [24], where we show that they give 
rise to nonconservative (and, therefore, nonserviceable) numerical schemes. 

The influence of the time discretization has now to be analyzed. In [241, we 
show that the stability requirements for Euler and explicit, order 2 utta 
discretizations of system (17), are 

At<Cz, z = (M,“x iv(k))-‘, 

with C, a numerical constant. For the explicit third-order Kutta scheme that we use 
for our experiments, the mathematical result is not available, but it has been 
numerically determined (Section VI) that a similar stability requirement holds. 
stress the fact that it does not depend on the magnitude of the electric field, thus 
allowing to use an explicit scheme for a very wide range of values of E. 

Time discretization is also an other source of error. In [24], for optical scattering 
(20), and with a 3rd-order Kutta scheme, this error has been found of order 
(E At/o1)3. Thus, to achieve a given accuracy, the time step must not be ch 
large, depending on the electric field E, and on the smoothing length a. 
elusion, the electric field has no influence on the stability of the time discretization, 
but it does influence its accuracy. 

IV.3. Artificial Boundary Conditions 

For practical computations, the solution is calculated on a rectangular dorna~~ 

k, E [kl;‘“, k?]; kl”‘” < 0 d kjnax 

k, E [0, ky] 

with kl”““, Ikl”i”l, kyax, large enough. Since the particles move on horizontal lines 
(parallel to the k, axis), suppose from left to right, they leave the domain on the 
right vertical side (k, = kl;““). Therefore, they must be reinjected inside the domain 
on the left vertical side (k, = k’;‘“). A leaving particle located at (k;, k, ), with 
weigth f-, which leaves the domain at time t (thus k,(l) = k?““) is instantan~~~s~y 
replaced by a particle located at (k:, k2+) with weight f +, such that 

k:(t)=kl;‘“, k; =k,. 

If (ky- kF)/Ak, is an integer, all the particles including the reinjected ones, still 
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lie on a regular mesh. We noticed that a reinjection procedure, that does not main- 
tain a regular spacing between particles, leads to spurious oscillations of the mean 
velocity V(t). 

Two different procedures to assign weights f + to the reinjected particles have 
been tested, corresponding to two types of artificial boundary conditions for the 
continuous problem. 

(i) Periodic Boundary Conditions 

Only the assignment 

f’zf- (23) 

preserves conservativity. On the other hand, the exact solution is much larger near 
the right side than near the left side (cf. formula (25)). Thus the reinjected particles 
will have to “lose weight” in a “boundary layer’ near the left side, and relative 
errors in this region will be large. 

(ii) Zero-Boundary Condition 

Define 

f’=O. (24) 

Since the exact solution is smaller in the neighbourhood of the left vertical boun- 
dary (cf. (25)), this choice may lead to more accurate calculations than (23). 
However, conservativity is no more preserved, but this may not be a major draw- 
back, since the integral N(t) of the exact solution over the computational domain is 
not constant: 

However, as a stationary state is reached by the continuous solution, N(t) tends to 
a nonzero limit N, as t goes to infinity. To get reliable simulations, a similar 
property must be satisfied at the discrete level: 

n(t)=~Qifj(t)-+n, #O. 

However, numerical experiments (cf. Section V) show that this last requirement 
is not satisfied, and leads us to prefer the first weight assignment (23) for further 
computations. 
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V. TESTS OF THE NUMERICAL PARAMETERS ON THE RELAXATIQN TIME 

V-1. Introduction 

In the relaxation time model, the collision operator has the expression 

Q(f)(k) = -; (f(k) - M,(k))> 

where r is the relaxation time. 
Using the terminology of Section III, we can write 

In this model, the solution of the BTE (8) can be written in an analytical form, 
according to 

f(k, t) = f,(k + qEt/r?)e-“’ + i’ M&k -t qEu/h)e-“” du/z. 
0 

(25) 

We will compare it with our numerical solution in order to test the accuracy of t 
method. 

The numerical tests have been performed with electric fields of 104 to 106 V/m, 
relaxation times of lo-’ to 1 ps, and with a lattice temperature T= 77 K. The 
initial distribution function is taken equal to M,. The comparisons between the 
computed and the analytical solutions have been performed either on the distri- 
bution function f itself (given by (25)) or on the mean velocity C(t) or the mean 
energy E(t), given by: 

q2E2T2 q2E2 
@t)=;kBT+F -? (t 4 T)e-‘jr. 

We tested three explicit time discretization schemes: the Euler scheme, the seconds 
and third-order Kutta schemes. For the same computer cost, the relative error on 
velocity can reach 4%, with the Euler scheme, whereas it is always less than I % 
with the second- and third-order schemes. Since the third-order scheme is the most 
accurate for the transient part of the solution, we have chosen it for all the 
simulations presented in this paper. Its accuracy is sufficient for our purposes an 
we did not try higher order schemes. 

The numerical comparisons displayed in the remainder of this section will 
successively concern: 
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(1) The influence of the artificial boundary conditions. 
(2) The numerical determination of the order of the particle discretization in 

the k-space. 
(3) The stability of the time discretization. 

V.2. Influence of the Art$cial Boundary Condition 

In this paragraph, we display comparisons between the two types of boundary 
conditions presented in Section IV. For this experiment, we chose the following 
values for the numerical parameters and physical constants: 

Kp < 0 &(K;nin) = 0.2 eV 

KFax > 0 E(K;“~X) = 1 eV 

Km”” > 0 2 E(K~) = 0.2 eV 

E = lo6 V/m z= lo-l3 s 
At= 10-14s m* = 0.067 m 0 

N = 2000 particles m, =0.911 10P30kg. 

The two boundary conditions are compared on Fig. 1. Since we have noticed that 
the relative error on the distribution function does not significantly depend on k,, 
we only plotted its variations in the k,-direction. Figure la represents the 
“boundary layer.” We detail the physically significant interior part of the domain in 
Fig. lb. We also give the evolution of the discrete total density n(t) given by (18) on 
Fig. lc. 

As expected from Section IV, we can conclude that, except in a thin “boundary 
layer” near the side k, = k;nin, the relative error is less than 1% and is of the same 
magnitude for both methods. Moreover, f is nearly vanishing in the boundary layer, 
so that a relative error is not very significant in this region. On the other hand, with 
the zero-boundary condition (24), the total density does not reach a stationary 
state (cf. Fig. lc), which is a major drawback of this method. Therefore, the 
periodic boundary condition (23) seems to be the best, and we will use it 
throughout the rest of the paper. 

V.3. Order of the Method 

The error analysis summarized in Section IV suggests a study of 

We calculated if for different values of h, t, and E and for different regions of the 
k-space. Assuming that 

6 = My Ifi(t) -f&i(t), t)l 
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FIG. 1. Influence of the boundary conditions: (a) Relative error on the distribution function versus 
k, in the neighbourhood of the boundary (left scale: periodic boundary condition; right scale: zero 
boundary condition). (b) Relative error on the distribution function versus k, inside the domain 
(periodic boundary condition: dashed line; zero boundary condition: solid line). (c) Total density versus 
time (periodic boundary condition: dashed line; zero boundary condition: solid line). 

is proportional to h”, we have calculated m. We noticed that, as expecte 
independent of time. 

On the other hand, it is not affected by the boundary k, = 0. Figure 2 shows 
values of [Log 61 as functions of /Log hl (in normalized units), after 100 time steps. 
We notice that, for the two values of the field tested, the three points almost lie on 
the same line, whose slope m gives the order of the method. We find a mean value 
of m, rii = 3.2. 

5X1/78/2-6 
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FIG. 2. Determination of the order of the method after 100 time steps: + electric field = lo4 Vm-*; 
@electric field = lo5 Vm-‘. 

The most important conclusion is that m is greater than 2, as expected from the 
analysis of the previous section. It proves that the k-discretization is at least second- 
order accurate. Furthermore, we noticed that the method is not more accurate with 
8000 particles than with 500 particles, due to time discretization errors. Unfor- 
tunately, this feature will not be useful for real modelling, because of the singularity 
of real scattering cross sections (see Section VI). 

V.4. Stability Analysis 

In Fig. 3, we display the mean velocity versus time, for two values of the electric 
field and two values of the time step. One value of At (At = 1.42) is just below the 
stability limit, whereas the second value of At (At = 1.82) is just above the stability 
limit. The stability limit for the third-order Kutta scheme is defined by 

dtdu,z; u,, = 1.596, . . . . 

where ZQ, is the lowest positive root of the polynomial, 

q(u) = 1 - u + u*/2 - u3/6 

which is the third-order approximation of exp( -u). The instability in the second 
case is clearly visible. We conclude that the numerical stability limit is independent 
of the magnitude of the electric field. 
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FIG. 3. Stability analysis for 2 values of the electric field. Dashed line: Al = 1.4 s; solid !ine: 
At= 1.8 z. (a) E=O.Ol kV/cm; (b) E= l.OkV/cm. 

VI. THE POLAR OPTICAL INTERACTION 

We now present a model of a physically significant interaction: the polar optical 
interaction. At the end of this section, we shall also detail a one-dimensional model, 
which can be seen as an approximate model of the polar optical one. 

VI.l. The Physical Polar Optical Scattering 

The polar optical interaction describes the collisions between electrons and 
phonons (quantized vibrations of the crystal). The scattering cross section is 
m, 231 

S 
Sk k’) = ,k Opk,,z - ((No + 1) d(c(k’) - t(k) + iq,) 

with: 

+ N, d(&(k’) - c(k) - Ao,)) 

hw, = constant energy of a polar optical phonon, 
Sopt = (q%0&3&&,)(&,’ - &;I), 
sO = vacuum permittivity, 
8, = low frequency relative permittivity, 

Em = high frequency relative permittivity, 
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N,, = phonon occupation number, which is given by the Bose-Einstein 
statistics, 

No = (exp(fio,/k,T) - 1))‘. 

In axisymmetric geometry, the reduced scattering cross section (7) becomes 

o(k, k’) = B(k, k’)[(N,, + 1) 6(e(k’) -E(k) + ho,) 

+ No &E(k’) -c(k) - fiwo)] (26) 

with 

P(k k’) = 
S opt 

{[(k,-k;)*+(k2-k;)2][(kl-k;)2f(k*+k;)2])1’2’ 
(27) 

The presence of the delta functions in expression (26) has two interesting 
consequences: 

First, the singularity of p which appears on formula (27) when k = k’ does not 
make o more singular. Indeed, the delta functions express that the initial and final 
energies, c(k) and t$k’), are related by 

Is(k) - c(k’)J = hw, > 0. (28) 

This relation cannot be satisfied when k = k’. 
Second, still using Eq. (28), NO and (NO + 1) can be expressed according to 

N,=YV&a,s’)=(exp(js-s’l/k,T)-1)-i 

No + 1 = K(E, d) = X$(,2, E’) + 1 = exp( 1s - &‘//kg T) . ?~QE, E’), 

where we denote, as in the remainder, 

E = z(k), E’ = c(k’). 

Thus, expression (26) for CJ is equivalent to 

a(k, k’) = j3(k, k’)[F(c, E’) 6(e’ - E + ho,) 

+ 7iq&, E’) 6( E’ - & - hw,)] (29) 

and the symmetric function cp defined by (9) can be written 

cp(k, k’) = P(k, k’) K(E, .s’)[exp(&/kB T) d(a’ - E + Ao,) 

+ exp(e’/k, T) B(E’ - E - fro,)]. 
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According to the scheme described in Section IV, we introduce the smoot 
scattering cross section (T, which is deduced from the exact cross section o by 

o,(k, k’) = /J(k, k’)[%(e, E’) i,(E’ - E + Ho,) 
- 

+ NO(E, E’) i,(E’ -E -h(j)] 

with [, given by 

where [ is equal to the “hat function”: 

Therefore, qa, defined by (19) is written 

vo,tk, k’) = Ptk k’) K(G E’)CexptdkB T) ME - E + hwo) 

+ exp(e’/k, T) [,(E’ - E - koo)l 

and is clearly symmetric. If, instead of formula (29), we directly use formula (26) to 
define our numerical scheme, we derive a smoothed cpI given by 

cp,tk k’) = P(k k’) ewte’lk, T) 
x [(N, + 1) [,(E’ -E + ho,) + N&E’ - E - ao,)]. 

We notice that the present expression of cpr is different from (30) and that it is not 
symmetric, which leads to the loss of the relaxation property. A numerical test 
performed with a zero electric field and using formula (30) has s 
the numerical solution actually relaxes towards the Maxwellian at 
temperature. 

The aim of this paragraph is to experimentally show that the numerical method 
is convergent when a and At tend to 0 and N (number of particles) tends to inanity. 
We will also display and comment some results. 

In these numerical experiments, the collision operator is the sum of the 
optical operator (26) and of a relaxation time operator which is small corn 
with the polar optical one and which accounts for all other interactions (e.g., 
impurity or acoustic interactions). As the analytical solution of the problem is 
unknown, we have performed comparisons between computed salutions them~lves” 
Indeed, we have noticed that the relative difference between two of these solutions 
tends to 0, when one of the parameters (At, CC, or N ~ ‘I*) is decreased towards 0. 
For us, this gives an experimental proof of the convergence. 
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The physical conditions of the experiment are 

E= 105Vm-’ E 0 =884x10-‘*Hms-* . 
T=77K E, = 12.51 

m* = 0.067 m 0 ECC = 10.67. 

ho, = 36.46 10m3 eV 

The constant relaxation time is 

z = lo-” s. 

(a) Convergence when At Tends to 0 
We have computed the maximal relative difference 6, between two solutions in 

the significant region E < 0.1 eV, with 1000 particles and for the values of the time 
steps given in the following comparisons: 

At=2x10-‘3s/At=10-‘3s: 6=20% 

At=10-‘3s/At=0.5x10-13s: 6=4% 

At=0.5x10-13s/At=0.25x10-13s: 6=1%. 

We clearly see that the differences between two numerical solutions tend to 0 when 
At tends to 0, which indicates convergence. Also, a value of At = 2 x lo-i3 s, leads 
to a stable but inaccurate computation for this relatively high value of the field E. 
This confirms that stability is independent of the electric field, but that accuracy 
depends on it (cf. Section IV.2). 

(b) Convergence when N Tends to Infinity and when c( Tends to Zero 

From formula (22), we deduce that, for a fixed interparticle distance h (h = 
(Akf + dk:)i/* = O(N-‘I*)), the minimal error is obtained for a finite nonzero value 
of CI, a(h), asymptotically given by 

a(h) = O(h1’2). 

Thus, for increasing values of N, the optimal CI can be chosen smaller. From a 
physical viewpoint, CI must be chosen small enough compared with tie,. Indeed, in 
our numerical model, the energy gain or loss, undergone by an electron during a 
scattering by a phonon, will be comprised between fro, - CI and +io, + a. Thus, the 
optical threshold is decreased by the value 01. 

We have observed that too large values of a lead to an excessive smoothing, and 
large errors (of the order of several percents) on the mean velocity. 

On the other hand, too small values of CY. lead to parasitic oscillations. On Fig. 4 
are displayed the mean velocity and the mean energy versus time, for At = 0.05 ps, 
and for 2 choices of the parameters N and a. For N= 960, spurious oscillations 
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FIG. 4. Mean velocity V (solid line) and mean energy B (dashed line) versus time, for 2 choices of 
parameters: (a) N = 960, u = 0.025 fro,; (b) N = 1200, c1= 0.025 tiw,. 

appear when a reaches too small values (a = 0.025 Ao,). These oscillations vanish 
when, for the same value of CI, N is increased to the value 1200. This s 
these wiggles are a numerical effect and that the optimal value of R decreases as N 
increases. Anyway, these oscillations are weak, and lead to relative errors less than 
0.5 %, which shows that the method is not very sensitive to the choice of the 
numerical parameters. 

Similarly, we noticed that the relative errors on the distribution function itself 
decrease when N increases and lead to a reliable computation (within a 2% error) 
in the significant region E < 0.1 eV. 

We also tried to determine the influence of the smoothing function i: on tbe 
computation. We experimented the super Gaussian, 

[(x)=Kl/*(1.5-x2)exp(-x2), 

which in standard cases, leads to more accurate results ([16, Lemma 4.43). 
However, no significant difference with the “hat function” can be detected on the 
mean velocity and mean energy curves. This confirms (cf. Section IV) that, due to 
the very weak regularity of the solution, the convolution error cannot be improved 
by the use of a higher order cutoff. However, the numerical solution is not modified 
by a change of the shape of the smoothing function, which shows that the descrip- 
tion of the physics is insensitive to this choice. Since the use of a super Gaussian 
is more costly, the choice of the “hat function” leads to the best numerical 
compromise. 
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Finally, let us point out that the modelling of the polar optical interaction 
involves a certain number of approximations: 

- measurements errors to determine the numerical values of E,, E,; 
- modelling errors when the optical phonon dispersion relation is 

approximated by the constant ho,,. 

In order to compare these errors with the numerical ones, we have performed a test 
with a deliberate 10 % error on the value of Sept. This leads to a relative error on 
the mean velocity of about 4% that is 10 times larger than the numerical error. 

(c) Results 
Let us now give a brief physical comment on the results of the computation. In 

Fig. 5, we display the values of the distribution on the symmetry axis k, = 0. On 
Fig. 5a, we can see the distribution function at t = 1 ps (solid line) compared with 
the displaced initial Maxwellian (dashed line). The optical threshold is located at 
k0 = 2.6 lo+* m-r (vertical line). The abscissa of the maximum of the distribution 
function has not yet reached the threshold k,, and the distribution function is very 
similar to the displaced Maxwellian. On Fig. 5b, the same comparison is performed 
at time t = 1.6 ps. At this moment, many electrons have undergone an optical scat- 
tering, and the distribution function is therefore, very different from the displaced 
Maxwellian. The major part of the displaced Maxwellian which is located after the 
threshold has been transfered near the origin. This explains the occurrence of a 
velocity overshoot (cf. mean velocity curves, Fig. 4a, b). Physicists have sometimes 
doubted that optical scattering could generate velocity overshoots (cf. [25] and 
also [26] for a recent viewpoint on scattering induced negative differential 
resistivity). According to the present simulation, it seems that such overshoots may 
actually exist. Figure 5c displays the stationary distribution function, on the 
symmetry axis. 

VI.2. A One-Dimensional Relaxation Time Model for 
Polar Optical Scattering 

In this section, we investigate a one-dimensional relaxation time model, which is 
intended to mimic the polar optical interaction. We refer to the end of Section III, 
for the 1D formalism. This model is given by 

W-Cl> t) = - -$$ Cf(kl, t)-P(t) M&W,)1 

with 

$k,) = 
Tl if e(kI) < E, 
z2 if E(kI) > E, (31) 
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FIG. 5. Normalized distribution function along the axis k, =0 (solid line) compared witb a 
displaced maxwellian (dashed line). Vertical line: optical threshold: (a) time = 1 ps; (b) time = 1.6 ps; 
(c) time = 3 ps (stationary solution). 
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We recover the formalism of Section III, by letting 

~(k,,k;)=z(k,)-‘z(k;)-’ jMp(k,)T(k,)-‘dk, ( ) 
-1 . 

The relaxation time (31) with a threshold is designed to mimic the optical 
threshold. Thus, the present model retains the singular behaviour of the real optical 
interaction, near the threshold energy. This is why we consider it as a good test of 
the reliability of the method. An explicit stationary solution can be obtained; 
although very tedious, the calculation is classical and is omitted. We have com- 
pared the computed and analytical mean velocities. The physical parameters are 
chosen to be 

F, = iio, = 0.035 eV 

T=77K 

m*=O.O67m 0 

E = lo5 V/m 

z* = lo-l2 s, 

and the computation was performed with 1000 particles (100 in k, x 10 in k,). The 
results are given for four values of z1 in Table I. 

VI.3. Conclusions 

This numerical method requires to control a few numerical parameters (number 
of particles, smoothing parameter, time step, choice of the smoothing function, . ..). 
However, it seems quite insensitive to the numerical parameters as long as they 
remain in a reasonable range and leads to rather accurate results, for a very 

TABLE I 

Comparison between the Exact and Computed Mean Velocities 

z, (x lo-1’s) 1 113 W l/10 

Exact velocity ( x lo7 cm. s-‘) 3.69 3.45 3.08 2.62 
Computed velocity ( x 10’ cm SK’) 3.66 3.43 3.07 2.60 
Relative error (percent) 1 0.7 0.4 1 
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moderate number of particles. This is confirmed by the comparisons with the 
analytical model of Section VI.2, which exhibits the same singularity features as the 
real model. 

VII. THE ~-VALLEY MODEL 

VII.1. Introduction 

Multi-valley models are designed to take into account the presence of several 
minima (valleys) in the real e(k) relation. This relation is approximated in the 
neighbourhood of each minimum by a parabolic relation in which the effective mass 
parameter m* depends on the valley. These minima are separated by energy shifts, 
and the higher energetic valleys can only be populated when high enough electric 
fields are present. For example, in GaAs, the lower minimum (r valley) is 
supplemented by secondary minima (L and X valley), with energy shifts /8]: 

A r-L N 0.3 eV; A,_, N 0.5 eV. 

Furthermore, due to symmetry properties of the Brillouin zone, several L valleys 
exist. With good accuracy, they can be considered as equivalent and gathered into a 
single valley, with a density of states equal to Z,(4n3)-‘, where Z, is the number of 
equivalent valleys. Similar considerations hold for the X valley. In the subsequent 
study, only the I’ and L valleys will be considered. The motivation for this restric- 
tion is that the X valley will always be less populated than the others. It would not 
lead to more difficulties to include the X valley in the model. However, our aim in 
this paper is to analyze numerical rather than physical effects. 

To summarize, each valley is characterized by the following parameters: 

r Valley: rnr: effective mass in the r-valley. 
Z,: number of equivalent valleys. 

L Valley: rnz: effective mass in the L-valley. 
2,: number of equivalent valleys. 
A: energy difference between the bottom of the two valleys. 

If we choose the origin of wave vectors at the bottom of each valley, wave vectors 
and energies are related by 

ii2 k2 
EL(k) = A fF. 

L 
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Both valleys are modelled by a specific distribution function, which, in the 
homogeneous field formalism, are solutions of the following Boltzmann system: 

(32) 

I-A 0) = f-o,(k); fAk> 0) = fo,(W, 

where we denote by fr and fL, the distribution functions in the r and the L valleys, 
Qr and Q,, the intravalley collision operators (similar to those studied in Section V 
and VI), and Qr,L and QL,r, the intervalley collision operators. The two equations 
giving the evolution offr and fL are coupled by the intervalley collision operators, 
which are given by 

- ~r,Ak k’) ./r(k)) 2, dQ(k’) 

Qdfr> fJ(W=( (~,dk', klfi-WI 

- o,.Ak k') f,(k)) Z, dQ(k')> 

(33) 

where CJ T,L(k, k’) Z, dC(k’) is the reduced transition rate from the k state in the r 
valley to a state belonging to a small volume dG(k’) around k’, in the L valley. 

The conservativity property of the multivalley model again reduces in the 
homogeneous field formalism to the choice of a suitable normalization. We have 
chosen 

i’ (z,fr(k t) + Z,fdk t)) do(k) = 1. 

Let us point out that the normalized densities ~1~ and nL in each valley, defined by 

nr(t) = s Z,fr(k, t) dQ(k); n,(t) = j” Z,f,(k, t) dQ(k) 

are no longer constant in time, as expected. The total mean velocity is given by 

v(t) = SF j” Zrfi-(k t) k, do(k) +-$ j- ZJD, t) k, da(k). 

The relaxation property must now express that, at equilibrium, the two valleys 
are in thermodynamical equilibrium with each other, as well as with the material. 
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For that reason, the thermodynamical equilibrium will be given by the pair of 
normalized distribution functions, 

M;(k) = N*(T)-’ exp - (Fr( 

ML,(k) = N*(T)-” exp- (&~(k)/~~T), 

where the effective density of states in the conduction band is now given by 
(4n3))’ N*(T), with 

N*(T)=Z, 
(2nmiJz, Tri2 

+ZL(2yy+)‘-‘exp-&. 

In all the physical cases, the transition rates CJ~,~ and G=,~ can be written according 
to 

a,,,&, k’) = vr,Ak> k’) WW 
o,,r(k k’) = cPL,r(k k’) WW), 

where (P~,~ and (P~,~ are positive distributions which satisfy 

cpr,L(k k’) = vu-W> 

With (34) and (35), the relaxation property is mathematically expresse 
proposition 

Q,,(fr>f,,= Qdfr,fd=O- Vi->fd=( 

We stress the fact that the relaxation property holds even if q7r,L or qL,r are not 
symmetric. All that we need is the symmetry property (35) between c,D~,~ and q,.,. 

VII.2. The Numerical Scheme 

Let f c, f k I be tbe particle discretizations of the distribution functions fr, fl, : 

f;=CQ;ff6(k-k;(t)); f$=~Q;f~6(k-k;(f)). 
I i 

We notice that the two valleys are represented by a different set of particles with 
different positions in the k space, and thus, different control volumes. The particles 
of each valley move according to the same equations as in the one valley case: 

kf-( t) = k;(O) - qEt/W; kf( t) = k;(O) - qEt/h. 
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The discretization of the intravalley collision operator is not modified. The inter- 
valley collision term is approximated by 

where 0; L is a suitable approximation of (TV,=, 
in the one valley case (and similarly for o;,~). 

depending on its singularity, just as 

Again, a computational domain is introduced which can be different for the L 
and the r valleys. The same boundary conditions and the same time approximation 
schemes are used. 

VIII.3. The Physical Intervalley Scattering 

The intervalley scattering describes the collisions between electrons and inter- 
valley phonons of constant energy tioO. The reduced scattering cross section is 
given by [S, 11, 231 

ar,L(k k’) = SintC(No + 1) d(EL(k’) -&r(k) + Jzwo) 
+ No &EL&‘) - &r(k) - fiaJ1 

aL,Ak k’) = SintC(No + 1) J(EAk’) -EL(k) + fiu,) 
+ IV,, b(cr(k’) - EL(k) - fiwo)]. 

NO is the phonon occupation number (cf. Section VI) and Sint is given by 

where D,%, is the intervalley deformation potential and p the volumic mass of the 
material. 

The same procedure as for the optical scattering has been used to smooth out 
ar,L and aL,r, with the same “hat function” c. The numerical experiments lead to 
the same conclusions. We experimentally observed the convergence when At goes to 
zero and N goes to infinity. The influence of c1 is similar, except that larger values of 
a are acceptable, since the intervalley threshold energy d,,, is large compared with 
the intervalley phonon energy fiwO. Similarly, we observed that the numerical errors 
generated by variations of the numerical parameters (At, N, or a) are smaller by 
one order of magnitude than errors due to the uncertainty in the measurements of 
physical parameters (e.g., D, L, ho,). 
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We now present the results of a computation performed with the physical 
parameters: 

E= 106Vm-’ ho, =0.0278 eV 

T=VK Z,=l 

A r,L =0.295 eV z,=4 

p=5.33~10~kgm-~ m~=0.067 m cl 

D r,L = 10” eV m-i m*=O22m L . 0. 

For the sake of simplicity, we have modelled the intravalley collision terms by 
relaxation time models (cf. Section V). The values of the relaxation times in both 
valleys are given by 

zy,r = 1 ps; ZLJ = 0.05 ps. 

In Fig. 6 the mean velocity G(t) and the normalized density in the r valley n,(t) are 
presented. am decreases due to r- L transfer while C(t) exhibits an overshoot. 
These features are classical in this context of interaction. However, during the 
transfer phase, we notice an important change in the slope of the V(l) curve at time 
t = 0.75 ps; it is much earlier than the time when U(r) stabilizes at its stationary 
value (approx. t = 1.4 ps). The time evolution of the distribution function allows us 
to understand this feature. 

_ 8.0 

1. 2. 

TIME ( PS ) 

FIG. 6. Intervalley scattering: density n, (solid line) and mean velocity 5 (dashed line) versus time. 
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Figures 7a to 7d show the r distribution function near the k, = 0 axis. The units 
are not significant (due to scaling) but the relative magnitudes between different 
figures are relevant. The threshold wavevector for r--L transfer is located at 
7.7 x 10’ m - ‘. 

Figure 7a presents the distribution function at t = 0.5 ps which corresponds to the 
maximum value of i?(t). There are clearly two populations of electrons. The main 
peak is constituted by quasi-ballistic electrons which have moved under the electric 

I I”.- (a) 
- V -  

\  

-8. 0. 8. 16. -a. 0. a. 16. 
k, (xlO*M-‘1 k, ( x lo8 II-’ ) 

JL 

Cd) 

L 
-a. 0. a. 16. -8. 0. a. 16. 

k, ( x IO8 m-l ) k, (x108m-‘) 

FIG. 7. Intervalley scattering: Distribution function in the f valley along the axis kz =O. Vertical 
line: intervalley threshold. (a) time = 0.5 ps; (b) time = 0.75 ps; (c) time = 1.1 ps; (d) time = 2.5 ps. 
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field and which are beginning to transfer in the L valley. The secondary wider 
distribution includes electrons which have undergone strong interactions wit 
medium. 

Figure 7b takes place at time t = 0.75 ps, which just corresponds to the change 
slope. We notice that the quasi-ballistic electron peak has completely disappear 
by T-L transfer and that the secondary peak is now dominant, and a little 
displaced in the electric field. This secondary peak is now going to transfer itself, 
but since it is wider and smaller by one order of magnitude than the primary peak 
was, the slope of the 6(t) curve reduces by one order of magnitude. 

Figure 7c takes place at t = 1.1 ps during the transfer of the secondary peak, A 
third population of electrons emerges, which, once again, is due to the intravalley 
collision term. Also, the L - r back transfer begins to be noticeable in the left of the 
tail of the distribution function. 

Figure 7d shows the stationary distribution function. The third po~ulati5 
electrons has become dominant and the secondary peak has almost completely 
appeared. There only remains an angle in the distribution function, at the threshold 
wavevector. This stationary solution has qualitatively the same shape as that given 
in [ZO] from Monte-Carlo calculations, although the intravalley collision mo 
not the same. 

As a conclusion, we see that the establishment of the stationary solution is a 
complex phenomenon involving two time scales. However, this phenomenon can be 
extremely dependent on the particular relaxation time model that we have chosen 
to account for the intravalley collision terms. It is probable that including more real 
models would strongly change the results. Nevertheless, we think that the present 
method, if applied to realistic models, could become a useful tool for the 
understanding of complex physical phenomena. 

VII.4. The One-Dimensional Model 

As for the optical interaction, we present in this paragraph a one-dimensional 
model for the intervalley scattering, which provides a test case for the reliability of 
the method. 

For simplicity, we set 2, = 2, = 1. The one-dimensional, two-valleys equilibrium 
distribution functions are, under these hypotheses, 

Mf!)(k,) = N;l exp- (sy(k,)/kBT) 

Mii)(kl) = NC’ exp - (~~(k~)/k~T) 

N, = (2zmFk, T/t?2)1/2 + (2xmZk, T/lti2)“2 exp( -A/k, T). 

Introducing the wave vector k, corresponding to the threshold energy d, 

k, = (2mF A/A2)1!2, 

581178%7 
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we set (with H defining the Heaviside step function) 

f3k,)=H(lk1I -kA 

ni-W=~f,(k~~ t)dk,; no = j- f&l > t) 4 

W)=~W,M-(4, t)dk,; nO,’ = 8(k,) M,(k,) dk, s 

nO,= M,(k,) dk,; s n”, = 
s 
M,(k,) dk,. 

The collision operator is modelled by two relaxation times for the r-L and L-r 
transfers. The r--L transfer exhibits a threshold at the energy A. This model has 
been studied by Baranger [5] and is written 

with 

1 1 n”,’ -= --. 
TL,I- TY,L n”L 

We can express (36) and (37) in the general formalism (33) with 

(39) 

We remark that (P~,~ and qL,I. defined by (39) are not symmetric, but according to 
(38) they satisfy relation (35), which ensures the relaxation property. 

The procedure which enables us to simulate this 1D model with our 2D code is 
similar to that explained in Section III for the one-valley model. 

For the numerical experiments we do not use any smoothing for the transition 
rates: 
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TABLE II 

Comparisons between the Exact and Computed L-Densities nL 
and Mean Velocities fi ( x 10’ cm s-l) 

Electric field 
( x 10J V/m) 

Exact nL 

Computed nL 

Relative error 
on nL 

Exact +G 

Computed 5 

Relative error 
on V (percent) 

1 

0.0004 

0 

Not 
significant 

0.749 

0.750 

0.2 

4 5 i0 

0.268 0.416 0.747 

0.264 0.410 0.740 

2% 1.5% 1 % 

1.98 1.888 1.153 

2.00 1.860 1.167 

2 1.2 1.5 

To model the intravalley collision terms, we choose constant relaxation ti 
model, zr,r, zL,L. To compare with the solution given in [S]. we use the same 
physical conditions: 

T=300K z =, r = 0.295 ps 

A = 0.3 eV T L,L = 0.030 ps 

rnF = 0.069 m 0 ZY,L = 0.147 ps 

mf=1.2m 0 z L,T = 3.85 ps. 

These parameters were used by Baranger (especially rnT. and z~,~) to fit t 
calculated v(E) curve to the experimental one [S]. 

4. -4. 0. 4. 8. i2. 

4 ( x lo8 m-l ) 

FIG. 8. Stationary f distribution function in the ID intervalley model. Solid line: computed solution; 
dashed line: analytical solution. 
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2000 particles were used in the r valley and 1000 in the L valley. The 
comparisons between the analytical and the computed densities and mean velocity 
for the stationary state, are displayed in Table II. 

In Fig. 8, we also display the computed stationary distribution function. By 
comparison, the analytical distribution function found by Baranger [S] is shown in 
dashed lines. 

VIII. CONCLUSION 

We have presented a new particle method for the simulation of the Boltzmann 
transport equation. This method relies on a deterministic treatment of the collision 
integral, which contrary to the Monte-Carlo method, does not require the use of 
random numbers. The method has been tested in he homogeneous field formalism, 
which is a simplified but still physically relevant case. Several types of interactions 
have been considered; in all these cases, the method has been shown to be fairly 
accurate for a very moderate number of particles (of the order of 1000). Sharp 
resolutions of transient regimes have been obtained, without any time averaging. 
Furthermore, precise representations of the distribution functions are available, 
which allow good insight into the physical processes. These computations have 
been taken according to the type of interaction, between a few seconds and a few 
minutes on the CRAY 1 of the CCVR. 

A brief outline of the numerical analysis of the method has been given, It has 
been illustrated by numerical tests in the case of relaxation time models, for which 
analytical solutions are available. It has been verified that the method is convergent 
and not sensitive to the choice of numerical parameters. 

For the simulation of the polar optical interaction, it is necessary to introduce a 
smoothing procedure, but that leads to minor errors compared with those 
associated with the uncertainties on the physical constants. The same procedure is 
necessary for intervalley scattering; finally, the results of a complete simulation of 
intervalley scattering is displayed and analyzed, which shows that the method can 
yield a good understanding of the physical phenomena. 
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